If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-4x=20
We move all terms to the left:
12x^2-4x-(20)=0
a = 12; b = -4; c = -20;
Δ = b2-4ac
Δ = -42-4·12·(-20)
Δ = 976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{976}=\sqrt{16*61}=\sqrt{16}*\sqrt{61}=4\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{61}}{2*12}=\frac{4-4\sqrt{61}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{61}}{2*12}=\frac{4+4\sqrt{61}}{24} $
| 7=p/3 | | 8x=1=-31 | | 0.231x^2+2.600x+34.83=0 | | x+32=56 | | V=3.14*r*r | | 3(x+20)=6x | | -4/5w=-20 | | 0.2313x^2+2.600x+35.17=70 | | 0.2313x^2+2.600x+35.17=0 | | 9(2x+3)-5=-(×-3) | | 5(x-4)+2x+1=27 | | 3x^2+12x+19=17 | | -5(6x-7)+2=-30+37 | | 34+b=119 | | b+2=46 | | 5(x-2)+x=9x+4 | | 3(1+8x)-2x=33+7x | | 8+2y=-6 | | 1x+13=14 | | M+4m=21 | | X-8=-(x+4) | | 3x-4=18-3+-5x | | 3t±11t+6=0 | | |3x-2|=5x-4 | | 54+p=87 | | 7x^2-6x=142 | | 5u^2-10u+51=6 | | 1-6x+6x=-6 | | 6n=3-2n+5 | | Y-8=-0.01(x-1) | | x/18=40 | | 26=(0.175x)+x |